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Introduction

Radiotherapy is the mainstay in the treatment of a 
number of cancers, including breast cancer. It is typically 
administered as primary treatment or as a part of 
combination treatment. The process involves the use of 
ionising radiation targeted at cancer cells with the aim 
of killing the cells and prevent any further invasion or 
spread. It has been suggested that radiation therapy may 

be warranted in up to 50% of breast cancer patients (1), 
and is essential for patients who have had breast conserving 
surgery (BCS). The indications for radiotherapy in post-
mastectomy patients include the involvement of four or 
more axillary lymph nodes, T4 disease, tumour size of more 
than 5 cm, or positive surgical margins. The traditional 
method of administering radiation is through external beam 
radiotherapy (EBRT), which irradiates the whole breast. 
Radiotherapy has been shown to reduce the 10-year risk 
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of any recurrence following BCS by roughly 50% and the  
15-year risk of death by 15% (2).

In recent years, the advent of accelerated partial breast 
irradiation (APBI) has emerged, which involves the 
irradiation of a specific area of the breast during BCS. The 
rationale behind this technique is the evidence that local 
recurrence of breast cancer tend to arise from the tissue 
around the site of the original surgery, hence irradiating 
the cavity after lumpectomy can reduce local recurrence 
and will avoid irradiation of healthy breast tissue. One of 
the methods of APBI is intraoperative radiotherapy (IORT) 
which delivers a single dose of radiation to the cavity bed 
after lumpectomy at the time of surgery. The American 
Society for Radiation Oncology (ASTRO) concluded in 
a Consensus Statement in 2016 that in properly selected 
low-risk patients, APBI provides outcomes similar to whole 
breast irradiation (3). The use of IORT eliminates the need 
for patients to continuously visit the hospital for sessions of 
EBRT, which is a positive factor when patients’ convenience 
is considered. 

While most patients tolerate radiotherapy without 
complications, a proportion of patients undergoing 
radiotherapy will develop an adverse reaction. These 
adverse reactions are categorised into either early or late 
effects. Early effects are defined as adverse events that 
arise during or right after therapy or have not healed after 
90 days following therapy. Late effects arise in a span of 
months to years following the cessation of therapy and are 
more permanent and chronic in their effect resulting in 
pain, poor cosmesis, or loss of organ function (4).

In the breast, the skin is most commonly affected due 
to the high turnover rate of the skin cells. Early effects of 
radiation on the breast can range from mild erythema to 
necrosis or ulceration, all of which are considered as acute 
skin toxicity, whereas late effects include telangiectasia, 
atrophy or subcutaneous fibrosis. Telangiectasia was seen to 
have a higher risk of developing when there was prior acute 
skin toxicity (5). An association between genetic variants 
and the risk of developing radiotherapy-induced acute skin 
adverse events have also been reported (6). In addition, 
there have been several risk factors that have been suggested 
to increase the risk of developing adverse effects related to 
radiotherapy post-breast surgery. Women with larger breast 
size are more likely to develop late effects of radiation 
possibly due to greater dose variation (7). Other risk factors 
for radiotherapy toxicity include higher body mass, more 
advanced disease, hormone receptor negative disease and 
conventionally fractionated treatment regimens (8). 

Given that DNA damage caused by ionising radiation is 
typically repaired by the DNA repair pathway, it has been 
suggested that individuals with an inherited variant in the 
DNA repair pathway may have a reduced ability to repair 
damage caused by ionising radiation and therefore, may be 
more susceptible to adverse effects of radiation. Indeed, a 
number of studies have reported a candidate gene approach 
to examine the association between variants in known DNA 
repair genes, such as XRCC1 and ATM, with radiosensitivity 
(9,10).

Scoring systems for the adverse effects of radiation 
have been established, for example, the American College 
of Radiology developed a staging system for radiation-
associated acute and late changes, known as the Radiation 
Therapy Oncology Group (RTOG) Morbidity Scheme, 
which grades adverse effects on a scale from 0 to 4 (11). 
The Common Toxicity Criteria (CTC) is a scoring system 
developed by the National Institutes of Health (NIH) to 
grade acute toxicity effects (12). Another scoring system 
that is widely used for late changes is the LENT-SOMA 
scale (13,14) (Table 1). The existence of these different 
scoring systems leads to the question of which one is better 
at grading toxicities of radiotherapy, particularly the late 
effects.

Objectives

The objective of this literature review is twofold.
Firstly, we plan to determine the strength of the 

association between genetic variants in DNA repair genes 
with adverse reactions to radiotherapy, in breast cancer 
patients. 

Secondly, we sought to review and compare the current 
scoring systems of late radiation-induced changes across 
different types of cancers, using the RTOG Morbidity 
Scheme, CTC, and the LENT-SOMA scale as reference. 
We chose to focus on grading the late adverse effects of 
radiotherapy as these effects are more permanent and 
disabling compared to more acute adverse effects.

Methodology

A literature search on PubMed was done using a 
combination of the keywords: “radiation”, “radiotherapy”, 
“breast cancer”, “genetic”, “gene”, and “toxicity”. 

A separate search on PubMed was done for comparing 
scoring systems, using the combination of keywords: 
“radiation”, “toxicity”, “scoring”, “grading”, “comparison”. 
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The latest search was carried out on 30 October 2019.
Results were limited to English only for all searches. All 

types of articles were included. Titles that appeared relevant 
to the research topic were selected. Abstract and full text, if 
available, were reviewed and selected titles were narrowed 
down from there. 

A total of 21 articles were selected for this literature 
review. Ten were originally found and through cross-
referencing and using the ‘Similar Articles’ feature on 
PubMed, a further 11 articles were sourced. 

Limitations

As radiotherapy side effects are a relatively rare event, most 
of the studies had a small sample size.

Another limitation is the genetic polymorphisms 
themselves. The penetrance of the genetic polymorphisms 
was not defined, although it is believed that the adverse 
response to radiotherapy can be because of multiple low-
penetrance variants. 

Whilst each study described the method for assessing the 
severity of adverse events, this was not standardised across 
studies, making it difficult to meta-analyse the results. The 

end-outcome of the studies were not uniformly defined, 
ranging from vague descriptions such as ‘late changes’ to 
specific terms such as ‘fibrosis’. 

Another limitation is that the meta-analyses/systematic 
reviews we analysed might include overlapping studies. 
Some meta-analyses included other non-breast cancers. 
The dosage of the radiation used is not clearly stated either, 
which can lead to different effects.

Results

Overview of studies

A total of 17 studies on the effect of genetic polymorphism 
on radiotherapy toxicity were reviewed (15-31). Seven 
studies investigated the effect of the ATM  genetic 
polymorphism (15-19,27,29). Eleven studies investigated 
the effect of the XRCC1 genetic polymorphisms (19-28,30), 
and 9 studies included other genetic polymorphisms. 
(18,19,22,24,26-28,30,31) (Table 2). 

The most widely researched ATM polymorphism is the 
SNP rs1801516. Based on all the studies, 4 of the 7 studies 
on the ATM gene suggested a significant association with 
adverse effects (15-17,29). Two studies showed an increase 

Table 1 LENT-SOMA scale

Grade 1 Grade 2 Grade 3 Grade 4

Pain Occasional and minimal Intermittent and tolerable Persistent and intense Refractory and excruciating

Breast edema Asymptomatic Symptomatic Secondary dysfunction

Fibrosis Barely palpable,  
increased density

Definite increased density  
and firmness

Very marked density,  
retraction and fixation

Telangiectasia <1 cm2 1–4 cm2 >4 cm2

Arm edema 2–4 cm increase >4–6 cm increase >6 cm increase Useless arm

Ulceration Epidermal only,  
<1 cm2

Dermal only, >1 cm2 Subcutaneous Bone exposed, necrosis

Atrophy 10–25% >25–40% >40–75% Whole breast

Treatment

Pain Occasional, no narcotics Regular, no narcotics Regular, narcotics Surgical intervention

Breast edema Medical intervention Surgical intervention/mastectomy

Arm edema Elastic stocking/elevate arm Intensive physiotherapy/ 
compression wrapping

Surgical intervention/amputation

Ulceration Medical intervention Surgical intervention/wound 
debridement

Surgical intervention/mastectomy

Atrophy Surgical management
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risk of acute events (16,29), while another 2 studies showed 
a significant association with late fibrosis (15,17). One study 
showed a borderline association with late fibrosis (29).

For the XRCC1 polymorphs, 399Gln, 280His, and 194Trp 
and T-77C were the commonly analysed variants. Out of 
the 11 studies on the XRCC1 gene polymorphs, only 3 had 
a polymorphism that showed significant association with 
radiosensitivity (20,21,30). In one study (20), 399Gln was 
showed a borderline significance with overall radiotoxicity 
while 280His did not. In another study (21), XRCC1 T−77C 
mutation was shown to have a 2.86-fold increase in acute 
skin toxicity. Another study (30) also found that XRCC1 
T-77C mutation had an increased risk of acute skin toxicity. 
However, the majority of studies found no significant 
association of XRCC1 polymorphisms with radiation 
toxicity.

A total of 5 studies on the scoring system for radiation 
toxicity were reviewed (32-36) (Table 3). Three studies 
compared RTOG with LENT-SOMA (34-36), 1 study 
compared RTOG with CTC (33), and 1 study compared 
all three scoring systems (34). In the comparison between 
RTOG and LENT-SOMA, all related articles concluded 
that LENT-SOMA is a better scoring system for late 
radiation toxicities (32,34-36). This could be due to the fact 
that LENT-SOMA is more comprehensive as it covers a 
wider range of adverse effects (34) LENT SOMA was noted 
to more accurately reflect the condition of the patient (36).

On the other hand, the LENT-SOMA scoring has its 
weaknesses as well. It was noted that the LENT-SOMA 
scoring is more complex and time-consuming than the 
RTOG scoring, therefore it would not be ideal in a situation 
that has time constraints (34,35). 

In the single comparison between RTOG and CTC, 
the conclusion was that RTOG had a higher interobserver 
agreement, however, there was moderate correlation 
between the two scales in terms of consistency of findings, 
suggesting that there was not a tangible difference (33).

Discussion

The genetics behind radiosensitivity

After analysing the results of the reviewed articles, 
there appears to be some correlation between genetic 
polymorphisms and the presence of radiosensitivity. 
However, there remain inconsistent results, therefore 
it cannot be said for certain that there is a genetic link 
between the two. Several other factors can affect the 



Annals of Breast Surgery, 2020Page 8 of 12

© Annals of Breast Surgery. All rights reserved. Ann Breast Surg 2020;4:7 | http://dx.doi.org/10.21037/aob.2019.12.01

development of radiation-induced tissue damage, as a 
study pointed out that different breast volumes affected the 
predisposition towards injury (7). 

Due to the lack of a uniform scoring system for 
radiotherapy side effects, it is important to consider that 
the results of some studies may have been over- or under-
estimated. Regarding studies that showed a reduced 
association of the genetic variant with radiosensitivity, 
they might be considered as anomalies due to the lack 
of reproducibility when compared to most of the similar 
studies that prove otherwise. However, each result cannot 
be discounted, as they all carry their own weight.

There has been a theory that proposes that the 
phenotype of increased radiosensitivity is a complicated 
polygenic trait, where multiple gene polymorphisms are 
involved in bringing out the effect (10). This has been 
suggested in 4 of the reviewed articles (19,23,24,26). One 
article showed no increased risk when computing a risk 
score for multiple alleles (27). The idea is that on their own, 
these polymorphisms offer low penetrance, but the more 
polymorphisms an individual has, the combined penetrance 
will increase the total risk of developing radiosensitivity. 

More research needs to be done regarding this hypothesis, 
as there are limited studies on this topic. 

The traditional approach to identifying these gene SNPs 
have been candidate gene studies, where only selected genes 
that have been linked to radiosensitivity were researched. The 
flaw of this technique is that it is unlikely to find more SNPs 
that can be linked to radiosensitivity. A more recent method 
has been Genome-Wide Association Studies (GWAS), in 
which a wider spectrum of SNPs can be discovered (37,38). 
However, a large sample size, in the thousands, is required 
for GWAS to be considered reliable, and it may detect many 
false positive SNPs. It is important for replication studies to 
be carried out to distinguish the true positive SNPs.

So far, there is no validated genetic biomarker that can 
be used to predict susceptibility to radiosensitivity. All the 
studies done have not been conclusive enough to identify 
a genetic polymorphism that can be used as an indicator. 
The replicability of data is a major issue, as a lack of 
consistency in results are detrimental to the overall validity 
of the proposed hypothesis. Currently, there’s the ongoing 
REQUITE study that aims to validate genetic biomarkers 
that can be used in the future to predict radiosensitivity (39). 

Table 3 Comparison of studies on scoring systems for radiation toxicity

Lead author Year N Title Comparison Conclusion

Denis F (32) 2003 226 Late toxicity results of the GORTEC 94-01 randomized 
trial comparing radiotherapy with concomitant 
radiochemotherapy for advanced-stage oropharynx 
carcinoma: comparison of LENT/SOMA, RTOG/EORTC, 
and NCI-CTC scoring systems

RTOG vs.  
LENT-SOMA  
vs. CTC

LENT-SOMA most accurate

Low correlation between 3 
scales

Need for a common toxicity 
scale to be used

Chinnachamy  
AN (33)

2013 55 Evaluation of interobserver and interscale agreement 
in assessing late bowel toxicity after pelvic radiation in 
patients with carcinoma of the cervix

RTOG vs. CTC RTOG has higher interobserver 
agreement 

Moderate correlation between 2 
scales

Hoeller U (34) 2003 259 Increasing the rate of late toxicity by changing the score?  
A comparison of RTOG/EORTC and LENT/SOMA scores

RTOG vs.  
LENT-SOMA

LENT-SOMA a better grading 
tool

Anacak Y (35) 2001 116 Late radiation effects to the rectum and bladder in 
gynecologic cancer patients: the comparison of LENT/
SOMA and RTOG/EORTC late-effects scoring systems

RTOG vs.  
LENT-SOMA

LENT-SOMA a further step on 
reporting late effects

Precision makes up for its 
complexity

Mao MH (36) 2017 109 Comparing the RTOG/EORTC and LENT-SOMA scoring 
systems for the evaluation of late skin toxicity after 125I  
seed brachytherapy for parotid gland cancer

RTOG vs.  
LENT-SOMA

LENT-SOMA more accurate 
in the evaluation of late skin & 
subcutaneous toxicities 
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The effect of different radiotherapy techniques on adverse 
effects

Over the past two decades, there have been technical 
advances in adjuvant breast cancer radiation, with the 
advantage of minimising toxicity to the skin, heart and 
lungs. Radiation factors such as treatment volume (tangential 
breast fields only versus three or more fields), whole 
breast dose as well as the boost to the tumour bed, and 
dose homogeneity, can affect the cosmetic outcome (40).  
The shorter “hypofractionated” radiation therapy to the 
whole breast which takes only 4 weeks has been shown 
to be equivalent to the longer conventional course of 
radiotherapy which takes 6 weeks. The shorter course is 
more convenient for patients and is cheaper (41). Current 
interest in accelerated partial breast irradiation, where only 
the area around the tumour is irradiated, has led to the 
completion of several clinical trials, notable the TARGIT-A 
randomised controlled trial, which demonstrated that 
low risk patients with early breast cancer, a single dose of 
radiotherapy delivered at the time of breast conservation 
surgery, is equivalent to external beam radiotherapy 
delivered over several weeks (42). Intensity-modulated 
radiotherapy (IMRT) and volumetric-arc modulated 
radiotherapy (VMAT) are new radiation techniques that can 
improve radiation conformity and homogeneity. 

The role of surgical factors on adverse outcomes 

Besides radiation technique, surgical factors such as excision 
of large volumes of tissue, and post-operative wound 
infection can also lead to poor cosmetic outcomes. Recent 
advances in oncoplastic techniques in breast conserving 
surgery with use of local tissue flaps and movement of large 
volumes of breast tissue has also led to better cosmetic 
outcomes (43).

Scoring systems dilemma

All the studies used different scoring systems to grade late 
radiotherapy side effects. Besides a few studies using vague 
terms to describe tissue injury with no reference to any 
criteria, the most commonly used scoring systems were the 
RTOG and LENT-SOMA scale. CTC was only referenced 
in two studies (32,33). 

The consensus is that the LENT-SOMA scale is the most 
accurate and reliable scoring system. However, it is specific 
to late toxicities. This result is no surprise, considering 

the history of the development of the LENT-SOMA 
scale in which the original creators of the RTOG scoring 
system helped its development with the aim of improving 
reporting and establishing a uniform scoring system for late  
toxicities (13). The scoring of early radiotherapy toxicities is 
beyond the scope of this review.

The use of multiple scoring systems to judge toxicity 
brings about an aura of uncertainty. End-outcomes 
for studies can be inconsistent and involve different 
outcomes across the board, making it difficult to make 
a proper judgment regarding the true effect of SNPs on 
radiosensitivity. This makes it harder to draw comparisons 
across multiple studies, especially when performing a 
review. 

Conclusions

Radiogenomics is an upcoming field of research with 
much potential. The prospect of an individual’s genetic 
profile being linked to radiosensitivity can enable a more 
personalized approach to radiotherapy, with customization 
of dosage to minimise the risk of developing radiation-
induced damage to the breast. 

However, the genetic links that have been researched 
and reviewed in this article remain inconclusive. Although 
there is a general correlation seen between genetic 
polymorphisms and radiosensitivity post-breast surgery, 
the research done so far is limited and with small sample 
sizes. There is still no validated genetic marker that can be 
used to predict radiosensitivity, although there are studies 
ongoing. To conclusively establish a genetic component to 
radiosensitivity, a multi-centre prospective study should be 
carried out to determine the genetic polymorphisms that 
affect radiosensitivity. With different radiation techniques, 
surgical and host factors, it is difficult to determine the 
contribution of each factor in cosmetic outcomes. 

The lack of a uniform scoring system to assess the 
side effects of radiation is an obstacle in the attempt to 
accurately determine how genetics affect radiosensitivity. 
While it is common for different institutions to have their 
own preference regarding which scoring criteria is adopted, 
this will make it hard for the analysis and coordination of 
data when their research comes together.

In conclusion,  there is  l ikely a genetic l ink to 
radiosensitivity. However, this remains inconclusive as there 
are no valid markers to predict radiosensitivity. As of right 
now, radiogenomics is an upcoming field of research. In the 
future, studies may be able to accurately identify specific 
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genetic markers. Until then, radiogenomics remains an 
ocean of vast potential.
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